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1. Introduction

The need for highly accurate pointing control of large flexible space structures has led to

the development of many system identification techniques to provide models for modem control

methods. Specifically, Q-Markov Covariance Equivalent Realization (COVER) and the

Eigensystem Realization Algorithm (ERA) have received considerable attention. Both have been

applied to large flexible structure testbeds such as the ACES facility at NASA Marshall [1], [2],

[3], [4]. These methods were developed independently and little work has been done on

comparing the two methods. In Section 2 of this paper, a brief description of the methods and

theoretical comparisons are made. Emphasis is placed on the implications of the comparisons

to the practical implementation of the methods.

While studying the two methods, it was noted that a quality measure, Degree of Modal

Purity (DMP), used in ERA serves two key functions that were lacking in the Q-Markov

COVER algorithm. One key function of system identification algorithms is that they provide not

only a model of the system, but also information about the limitations/uncertainty in that model.

This requirement is especially important when using robust control techniques such as H®, _z,

or Maximum Entropy/Optimal Projection. A second key function of system identification

algorithms is to eliminate spurious modes induced by noisy measurements in the identification

experiment thus determining the proper system order. DMP provides these functions in ERA.

In Section 3 of this paper, DMP is developed for the Q-Markov COVER algorithm.

Finally, the two methods are applied to a two degree-of-freedom spring-mass-damper

system to provide a demonstration of some of the method comparisons and the usefulness of the

newly developed DMP for the Q-Markov COVER algorithm. Further method comparisons and

implementation issues are also discussed. A summary of the application is given in Section 4.
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2. Method Comparisons

It is assumed that the structure to be identified can be represented as a discrete-time

linear, time-invariant, finite dimensional system of the form

x(k+l) : az(k) + Bu(k)
y(k) = Cz(k) + Du(k)

(2.1)

where x e _gn_', y e 9tat, u E _'. The system identification methods Q-Markov COVER and

ERA are based on the concept of obtaining a discrete-time state space realization of a structure

from time domain test data. Concepts from system/control theory are used to produce the

realizations. Detailed description of the algorithms can be found in [5], [6], [7], and [8]. In the

Q-Markov COVER algorithm, the matrix

- oJo,-
is formed from pulse response data (Markov parameters) obtained from the system.

2.20q and X are given by

O_

X =AXA*+BW'B* = [B AB A2B ...],diag(W, W, ...)*

*

B'A*

B'(a2) '

(2.2)

In Equation

(2.3)

In Equation 2.3 W is a diagonal matrix with the square of the input pulse magnitudes along the

diagonal, and X is the state covariance matrix. A singular value decomposition is performed on

Dq to determine the principle gains and directions. The resulting direction and gain matrices

along with another matrix composed of pulse response data (Markov parameters) are used to

compute the state space realization of the system. In the absence of noise, the first q Markov

parameters and the first q covariance parameters of the identified system are guaranteed to be

identical to those of the true system. In ERA the generalized Hankel matrix

(2.4)

is formed from pulse response data (Markov parameters) obtained from the system. In Equation

2.4 Vg, a generalized observability matrix, and Wn, a generalized controllability matrix, are given

by Equation 2.5.



In Equation 2.5 % t_ are used to select data from particular times and Ji, Ki are used to select

data from particular outputs/inputs respectively. A singular value decomposition is performed

on the generalized Hankel matrix with k = 0. The resulting direction and gain matrices along

with a shifted generalized Hankel matrix (k # 0) are used to compute the state space realization

of the system. In both algorithms noisy data is handled by truncating the number of singular

values used in calculating the state space realization.

As can be discerned from the brief descriptions, several concepts are common to the two

methods. For example, both use Markov parameters as structural data and both use a singular

value decomposition to break the data into its principle components. One can also see that the

concepts of observability and controllability from system/control theory are highly prevalent in

both methodologies. As a result of this last similarity, the identified model will contain more

accurate information on the state, input, and output relationships of the structure than models

obtained from standard modal analysis methods. Since many modem control methods rely on the

accuracy of these relationships, the use of these identification algorithms is desirable. Finally,

it can be shown (proof available) that Q-Markov COVER and ERA produce equivalent realization

when the parameters of ERA are chosen to be si = (1 .... q), ti = (1,...,oo), Ji = (1,...,ny), K i =
(1,...,nw), and shifted k = 1. This equivalence, however, does not hold when singular values are
truncated to reduce the effect of noise.

When the parameters are not chosen as discussed previously, there are differences between

the methods. One major difference between the two algorithms is that ERA does not necessarily

incorporate covariance information. The covariance is a function of the long term time domain

behavior of the system as are the damping and low frequency gain; thus, the lack of covariance

information results in damping biases and low frequency gain errors in the resulting identified

systems. On the other hand, calculating the covariance is eomputationally expensive and time

consuming; thus, there are benefits to not including it. Another major difference between the

algorithms is the flexibility that ERA allows in choosing data with the parameters s, t, K, and J.

This allows one to eliminate particularly noisy data from the identification process; yet still

identify the system.

Recently, two new identification methods have been developed based on ERA and Q-

Markov COVER. The first method, Eigensystem Realization with Data Correlations (ERA/DC) [9]

incorporates correlation information into the ERA method. The second method, Observability

Range Subspace Extraction (ORSE) [10] is an extension of the Q-Markov COVER algorithm that

produces an identified model from colored noise response data. While both of these methods

expand the scope of the methods on which they are based, the expense is an increase in

computational complexity.



3. Development of Degree of Modal Purity for Q-Markov COVER

The concept of Degree of Modal Purity (DMP) was initially developed for the

Eigensystem Realization Algorithm in [5] and [6]. It is a method for determining the accuracy

of each mode in the identified model. Accuracy is determined by calculating the coherence

between the extrapolated modal time histories from the identified model and modal components

of the time domain pulse response data. This information is used to find and truncate spurious

modes produced by noisy data and to provide an accuracy measure for each mode of the

identified system. Previously, there was no such tool to provide these functions for the Q-

Markov COVER algorithm.

From the singular value decomposition of Dq it is possible to write

o_ = Pj'_" ¢3.1)

From Equations 2.2 and 2.3, it is clear that Pq is simply the observability-like matrix for a state

space representation of the structure with unitary state covariance. Let ft., /_, c_, /5 be the state

space representation of the discrete-time identified system obtained directly from the Q-Markov

COVER procedure. Let po ¢6 be the eigenvalues and eigenvectors of A respectively. Form the

modal representation, Am, B,,,, Cm, Din, of the system by using a transformation matrix whose

columns are _, the eigenvectors of/1.

A, _ _g_,_, p2 ,..4,_) s, = C, -- [c_ ... ca] (3.2)

n

For each mode of the identified system, form the extrapolated observability-like modal time

history

7,: ... o.3)

Project the modal time histories of the data using the corresponding eigenvector

ri = P¢**i

If the in mode is a true linear mode of the system, then l't and ri will be collinear.

y, given by
_m

ri r i

(3.4)

The value of

(3.s)

will be very close to 1 for true linear system modes. Noise modes, inaccurately identified modes,

and modes induced by strong nonlinearities will have values of Yi less than 1. Note that the

value of y_ quantifies the degree to which the i'h mode is observed in the output.
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4. Identification of a Two Degree-of-Freedom System

4.1 System Description

In order to demonstrate some of the method comparisons and the usefulness of the Degree

of Modal Purity for Q-Markov COVER, the two methods discussed in this paper are applied to

a two degree-of-freedom, two input, two output, spring-mass-damper system. The inputs are the

forces on the two masses, and the outputs are the position of the two masses. The state space

representation of the continuous time system is given by
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(4.1)

The continuous time modes of the system are described in Table 4.1. The system was designed

to have one long slow mode (Mode 1) and one short fast mode (Mode 2). The data used for

the identification were the output responses to pulses of height 50 sampled at a rate of 10 Hz.

Zero mean white noise with variance 0.01 was injected at the sensors producing a low signal to

noise ratio. The continuous time response to a pulse of height 50 width 0.1 without noise and

the noisy sampled response to the same input are shown in Figures 4.2 and 4.3.

Mode # Frequency

1

2

Damping

0.9939 Hz 0.0836

0.3808 Hz 0.0319

Table 4.1 Modal Data
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4.2 Choice of Parameters

In each method, parameters specifying the amount of data to be used by the method must

be chosen. The parameter q in Q-Markov COVER determines the number of Markov and

covariance parameters of the identified systems to be matched with the data from the true system.

It also determines the dimension of Dq and the maximum order of the identified system. The

parameters _ and rl determine the dimensions of the Hankel matrix used in ERA with _ being

the maximum order of the identified system. As discussed in Section 2, other parameters (s, t,

J, K) are available with ERA to reduce the data in the Hankel matrix by eliminating data from

certain times, inputs or outputs. This reduction of data is not used in this example.

Tables 4.2 and 4.3 show the results of varying method parameters on the eigenvalues of

the discrete-time identified system. Both methods produced accurate identified models. Data

from the final models is shown in the highlighted rows of Tables 4.2 and 4.3 and Figures 4.4 and

4.5. Relating these results back to the discussion in Section 2, the damping error for the ERA

identified models is generally larger than for the Q-Markov COVER identified models. Note that

the accuracy of the identified model is much more sensitive to parameter variations for ERA than

for Q-Markov. Including covariance information in Q-Markov COVER has an averaging effect

that reduces the sensitivity to the parameter q.

For both methods, it is clear that there is an optimal choice of parameters. When the

parameters are chosen too large, noise effects decrease accuracy. Due to the natural damping of

the structure, the amplitude of the pulse response of the system will decay while the magnitude

of the sensor noise will remain constant thus decreasing the signal to noise ratio with time.

When parameters are increased, the additional data has a lower signal to noise ratio than previous

data. When enough of this noisy data is included, the identification results become corrupted.

This effect is especially prevalent in Mode 2 which dies out more quickly than Mode 1. When

the parameters are chosen too small, not enough data is included to properly identify the modes.

As general guidelines one should choose parameters to include data from a full period of the

lowest frequency mode, while not including data tong past when the signal to noise ratio of major



modes has significantly degraded. If these guidelines conflict, decisions must be made as to

modal priority. Comparing frequency responses of the identified system with test data is also

beneficial in fine tuning the choice of parameters.

_,rl Order eigenvalues of ,_, % error % error Pulse

(discrete-time) frequency damping Response
Error*

II1_1111] II

10 4 0.9600 +0.2290i 2.01 -75.97 4.5753

0.7203 + 0.5883i -9.90 -26.16

20 4 0.9537 ± 0.2410i -3.65 -107.47 4.9880

0.7658 __.+0.5578i -0.83 -2.26

29 4 0.9636 + 0.2360i ,''_ -0.39 -3.47 0.8992

0.7603+ 0_5595i : -1.66 .... -8.29

40 4 0.9679 + 0.2369i -0.31 53.42 2.9177

0.7589 + 0.5581i -1.64 -12.28

50 4 0.9688 + 0.2358i 0.02 36.51 1.8151

0.7496 + 0.5556i -2.38 -29.32

Table 4.2 Choice of Parameters for Eigensystem Realization Algorithm Identification

Q Order eigenvalues % error % error Pulse

frequency damping Response

Error *

' _ ...... 0 5210 4 0.9643 + 0.2339i . -2.22 i.7726

1.67 -23.33

20 4 -0.31 -0.87 0.7754

0.64 2.97

O.ll

-0.38

0.03 10.32 0.8777

30 ....4

40 4

0.7676 + 0.5399i

0.9639 + 0.2359i

0.7735 ± 0.5529i

0.9645,+ 0.2350i: :

• 0,7676,0.5558i

0.9649 + 0.2353i

0.7616 + 0.5553i

0.9646 + 0.2350i

0.7118

-0.97 -11.85

50 4 0.14 5.93 1.0491

0.7457 ± 0.5546i -2.71 -36.26

Table 4.3 Choice of Parameters for Q-Markov COVER Identification

The Pulse Response Error was calculated as the sum of the _2 norm of the difference

between the identified and true discrete time pulse response for 20 seconds.
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4.3 Use of Degree of Modal Purity with Q-Markov COVER

The usefulness of DMP with ERA has been demonstrated in [5] and [6]. It is shown in

this paper that DMP can provide similar benefits for Q-Markov COVER. Table 3.1 shows the
results of the identification using Q-Markov COVER with DMP for different choices of system

order. When the model order is made larger than 4, the DMP for the spurious modes decreases

indicating that the mode is not a true system mode. Note that the value of the DMP for Mode

2 is always lower than for Mode 1. Mode 1 is the dominant mode, so it is reasonable that

identification for Mode 2 would be slightly less accurate. This information could be incorporated

into norm based methods such as H® and _1as uncertainty via frequency domain weighting. The

modal uncertainty could also be incorporated into the Maximum Entropy/Optimal Projection

method via parametric uncertainty in the A matrix. Similar results were obtained using ERA with

DMP.



....Q .... Order Mode

#I
30 2 1

30 4 1

2

30 6 1

2

30 8 1

2

eigenvalues

(discrete system)

0.9646 ± 0.2345i

DMP

+ 0.5429i
m

0.9998

% error

frequency

0.30

% error

damping

3.31

0.9639 ± 0.2350i 0.9999 -0.11 4.26

0.7676 ± 0.5558i 0.9831 -0.38 -2.29

0.9645 ± 0.2350i 0.9999 0.11 4.55

0.7746 ± 0.5561i 0.9827 0.36 8.85

-0.3724 ± 0.8914i 0.9137

0.9646 ± 0.2348i 0.9999 -0.23 -0.21

0.7801 ± 0.5537i 0.9888 1.15 10.80

-0.3718 ± 0.8914i 0.9136 - -

0.4101 0.5088 - -

Table 4.4 Use of DMP for Identification of Example

5. Conclusion

This paper provides needed information on two popular techniques for structural

identification, Q-Markov COVER and the Eigensystem Realization Algorithm. Theoretical

comparisons based on system/control theory were related to practical implementation issues.

Comparisons of the two methods show that it is possible to choose parameters for ERA so that

the method is equivalent to Q-Markov COVER. Other parameter choices, however, result in the

methods behaving very differently. The adaptation of the Degree of Modal Purity to the Q-

Markov COVER Algorithm provides the method with two key attributes previously lacking in

the method. Quantitative information on the quality of the identified modes is now available for

use in determining system order from noisy data. This measure also provides the level of

uncertainty of each mode that is useful when applying robust control methods. The methods

were applied to a simple two-degree-of-freedom system for demonstration purposes. Guidelines

for choosing parameters in each method were presented. Work is currently in progress to apply

the methods to the Controls, Astrophysics, and Structures Experiment in Space (CASES) at the

NASA Marshall Space Flight Center [11].
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